Features

■ Registered inputs and outputs for pipelined operation

- Optimal for performance (double-cycle deselect) a Depth expansion without wait state

■ $256 \mathrm{~K} \times 18$ common I/O architecture
■ 3.3 V core power supply $\left(\mathrm{V}_{\mathrm{DD}}\right)$
■ 3.3 V/2.5 V I/O power supply ($\mathrm{V}_{\mathrm{DDQ}}$)
■ Fast clock-to-output times
口 2.6 ns (for $250-\mathrm{MHz}$ device)
$■$ Provide high-performance 3-1-1-1 access rate
■ User-selectable burst counter supporting Intel ${ }^{\circledR}$ Pentium ${ }^{\circledR}$ interleaved or linear burst sequences

- Separate processor and controller address strobes
- Synchronous self-timed writes

■ Asynchronous output enable
■ Available in Pb-free 100-pin TQFP package
■ "ZZ" sleep mode option

Functional Description

The CY7C1328G ${ }^{[1]}$ SRAM integrates $256 \mathrm{~K} \times 18$ SRAM cells with advanced synchronous peripheral circuitry and a two-bit counter for internal burst operation. All synchronous inputs are gated by registers controlled by a positive-edge-triggered clock input (CLK). The synchronous inputs include all addresses, all data inputs, address-pipelining chip enable $\left(\mathrm{CE}_{1}\right)$, depth-expansion chip enables $\left(\mathrm{CE}_{2}\right.$ and $\overline{\mathrm{CE}}_{3}$), burst control inputs (ADSC, ADSP, and ADV), write enables (BW ${ }_{[A: B]}$, and BWE), and global write (GW). Asynchronous inputs include the output enable ($\overline{\mathrm{OE}}$) and the ZZ pin.
Addresses and chip enables are registered at rising edge of clock when either address strobe processor (ADSP) or address strobe controller (ADSC) are active. Subsequent burst addresses can be internally generated as controlled by the advance pin (ADV).
Address, data inputs, and write controls are registered on-chip to initiate a self-timed write cycle.This part supports byte write operations (see Pin Definitions on page 5 and Truth Table on page 8 for further details). Write cycles can be one to two bytes wide as controlled by the byte write control inputs. $\overline{G W}$ active LOW causes all bytes to be written. This device incorporates an additional pipelined enable register which delays turning off the output buffers an additional cycle when a deselect is executed. This feature allows depth expansion without penalizing system performance.
The CY7C1328G operates from a +3.3 V core power supply while all outputs operate with $\mathrm{a}+3.3 \mathrm{~V}$ or $\mathrm{a}+2.5 \mathrm{~V}$ supply. All inputs and outputs are JEDEC-standard JESD8-5-compatible.

Selection Guide

Description	$\mathbf{2 5 0} \mathbf{~ M H z}$	$\mathbf{2 0 0} \mathbf{~ M H z}$	$\mathbf{1 6 7} \mathbf{~ M H z}$	$\mathbf{1 3 3} \mathbf{~ M H z}$	Unit
Maximum access time	2.6	2.8	3.5	4.0	ns
Maximum operating current	325	265	240	225	mA
Maximum CMOS standby current	40	40	40	40	mA

[^0]
Functional Block Diagram

Contents

Selection Guide 4
Pin Configurations 4
Pin Definitions 5
Functional Overview 6
Single Read Accesses 6
Single Write Accesses Initiated by ADSP 6
Single Write Accesses Initiated by ADSC 6
Burst Sequences 7
Sleep Mode 7
Interleaved Burst Address Table
(MODE = Floating or VDD) 7
Linear Burst Address Table (MODE = GND) 7
ZZ Mode Electrical Characteristics 7
Truth Table 8
Truth Table for Read/Write 8
Maximum Ratings 9
Operating Range 9
Electrical Characteristics 9
Capacitance 10
Thermal Characteristics 10
AC Test Loads and Waveforms 10
Switching Characteristics 11
Switching Waveforms 12
Read Timing 12
Write Timing 13
Read/Write Timing 14
ZZ Mode Timing 15
Ordering Information 16
Ordering Code Definitions 16
Package Diagram 17
Acronyms 18
Document Conventions 18
Units of Measure 18
Document History Page 19
Sales, Solutions, and Legal Information 20
Worldwide Sales and Design Support 20
Products 20
PSoC Solutions 20

Pin Configurations

Figure 1. $100-\mathrm{Pin}$ TQFP

Pin Definitions

Pin	TQFP	Type	Description
$\mathrm{A}_{0}, \mathrm{~A}_{1}, \mathrm{~A}$	$\begin{gathered} 37,36,32,33, \\ 34,35,44,45, \\ 46,47,48,49 \\ 50,80,81,82 \\ 99,100 \end{gathered}$	Inputsynchronous	Address inputs used to select one of the 256 K address locations. Sampled at the rising edge of the CLK if $\overline{\mathrm{ADSP}}$ or $\overline{\mathrm{ADSC}}$ is active LOW, and $\overline{\mathrm{CE}}_{1}, \mathrm{CE}_{2}$, and $\overline{\mathrm{CE}}_{3}$ are sampled active. $A_{[1: 0]}$ are fed to the two-bit counter.
$\frac{\overline{\mathrm{BW}}_{\mathrm{A}}}{\mathrm{BW}_{\mathrm{B}}}$	93,94	Inputsynchronous	Byte write select inputs, active LOW. Qualified with BWE to conduct byte writes to the SRAM. Sampled on the rising edge of CLK.
$\overline{\mathrm{GW}}$	88	Inputsynchronous	Global write enable input, active LOW. When asserted LOW on the rising edge of CLK, a global write is conducted (all bytes are written, regardless of the values on $\overline{\mathrm{BW}}_{[\mathrm{A}: \mathrm{B}]}$ and $\left.\overline{\mathrm{BWE}}\right)$.
$\overline{\text { BWE }}$	87	Inputsynchronous	Byte write enable input, active LOW. Sampled on the rising edge of CLK. This signal must be asserted LOW to conduct a byte write.
CLK	89	Inputclock	Clock input. Used to capture all synchronous inputs to the device. Also used to increment the burst counter when ADV is asserted LOW, during a burst operation.
$\overline{C E}_{1}$	98	Inputsynchronous	Chip enable 1 input, active LOW. Sampled on the rising edge of CLK. Used in conjunction with CE_{2} and $\overline{\mathrm{CE}}_{3}$ to select/deselect the device. $\overline{\mathrm{ADSP}}$ is ignored if $\overline{\mathrm{CE}}_{1}$ is HIGH. $\overline{\mathrm{CE}}_{1}$ is sampled only when a new external address is loaded.
CE_{2}	97	Inputsynchronous	Chip enable 2 input, active HIGH. Sampled on the rising edge of CLK. Used in conjunction with CE_{1} and CE_{3} to select/deselect the device. CE_{2} is sampled only when a new external address is loaded.
$\overline{\mathrm{CE}}_{3}$	92	Inputsynchronous	Chip enable 3 input, active LOW. Sampled on the rising edge of CLK. Used in conjunction with CE_{1} and CE_{2} to select/deselect the device. CE_{3} is sampled only when a new external address is loaded.
$\overline{O E}$	86	Inputasynchronous	Output enable, asynchronous input, active LOW. Controls the direction of the I/O pins. When LOW, the I/O pins behave as outputs. When deasserted HIGH, DQ pins are tri-stated, and act as input data pins. $\overline{O E}$ is masked during the first clock of a read cycle when emerging from a deselected state.
$\overline{\text { ADV }}$	83	Inputsynchronous	Advance input signal, sampled on the rising edge of CLK, active LOW. When asserted, it automatically increments the address in a burst cycle.
$\overline{\text { ADSP }}$	84	Inputsynchronous	Address strobe from processor, sampled on the rising edge of CLK, active LOW. When asserted LOW, addresses presented to the device are captured in the address registers. $\mathrm{A}_{[1: 0]}$ are also loaded into the burst counter. When ADSP and $\overline{\text { ADSC }}$ are both asserted, only $\overline{\text { ADSP }}$ is recognized. $\overline{\text { ASDP }}$ is ignored when $\overline{\mathrm{CE}}_{1}$ is deasserted HIGH.
$\overline{\text { ADSC }}$	85	Inputsynchronous	Address strobe from controller, sampled on the rising edge of CLK, active LOW. When asserted LOW, addresses presented to the device are captured in the address registers. $\mathrm{A}_{[1: 0]}$ are also loaded into the burst counter. When ADSP and $\overline{\text { ADSC }}$ are both asserted, only $\overline{\text { ADSP }}$ is recognized.
ZZ	64	Inputasynchronous	ZZ "sleep" input, active HIGH. When asserted HIGH places the device in a non-time-critical "sleep" condition with data integrity preserved. During normal operation, this pin has to be low or left floating. ZZ pin has an internal pull-down.
$\begin{aligned} & \hline \text { DQs }^{\text {DQP }_{[A: B]}} \end{aligned}$	$\begin{gathered} \text { 58,59,62,63, } \\ 68,69,72,73, \\ 74,8,9,12,13, \\ 18,19,22,23, \\ 24 \end{gathered}$	I/Osynchronous	Bidirectional data I/O lines. As inputs, they feed into an on-chip data register that is triggered by the rising edge of CLK. As outputs, they deliver the data contained in the memory location specified by the addresses presented during the previous clock rise of the read cycle. The direction of the pins is controlled by OE. When OE is asserted LOW, the pins behave as outputs. When HIGH, DQs and DQP ${ }_{[A: B]}$ are placed in a tristate condition.
$V_{\text {DD }}$	15,41,65,91	Power supply	Power supply inputs to the core of the device.
$\mathrm{V}_{\text {SS }}$	17,40,67,90	Ground	Ground for the core of the device.
$\mathrm{V}_{\mathrm{DDQ}}$	$\begin{aligned} & \hline 4,11,20,27 \\ & 54,61,70,77 \end{aligned}$	I/O power supply	Power supply for the I/O circuitry.
$\mathrm{V}_{\text {SSQ }}$	$\begin{aligned} & \hline 5,10,21,26, \\ & 55,60,71,76 \end{aligned}$	I/O ground	Ground for the I/O circuitry.

Pin Definitions (continued)

Pin	TQFP	Type	
MODE	31	Input- static	Selects burst order. When tied to GND selects linear burst sequence. When tied to $V_{\text {DD }}$ or left floating selects interleaved burst sequence. This is a strap pin and should remain static during device operation. Mode pin has an internal pull-up.
NC	$1,2,3,6,7,14$,		No connects. Not internally connected to the die.
	$16,25,28,29$,		
	$30,38,39,42$,		
	$43,51,52,53$,		
	$78,57,66,75$,		

Functional Overview

All synchronous inputs pass through input registers controlled by the rising edge of the clock. All data outputs pass through output registers controlled by the rising edge of the clock.
The CY7C1328G supports secondary cache in systems utilizing either a linear or interleaved burst sequence. The interleaved burst order supports Pentium and 1486^{TM} processors. The linear burst sequence is suited for processors that utilize a linear burst sequence. The burst order is user selectable, and is determined by sampling the MODE input. Accesses can be initiated with either the processor address strobe ($\overline{\mathrm{ADSP}}$) or the controller address strobe ($\overline{\mathrm{ADSC}})$. Address advancement through the burst sequence is controlled by the ADV input. A two-bit on-chip wraparound burst counter captures the first address in a burst sequence and automatically increments the address for the rest of the burst access.
Byte write operations are qualified with the byte write enable ($\overline{\mathrm{BWE}})$ and byte write select $\left(\overline{\mathrm{BW}}_{[\mathrm{A}: \mathrm{B}]}\right)$ inputs. A global write enable ($\overline{\mathrm{GW}}$) overrides all byte write inputs and writes data to all four bytes. All writes are simplified with on-chip synchronous self-timed write circuitry.
Synchronous chip selects $\overline{\mathrm{CE}}_{1}, \mathrm{CE}_{2}, \overline{\mathrm{CE}}_{3}$ and an asynchronous output enable ($\overline{\mathrm{OE}}$) provide for easy bank selection and output tristate control. ADSP is ignored if CE_{1} is HIGH .

Single Read Accesses

This access is initiated when the following conditions are satisfied at clock rise: (1) ADSP or ADSC is asserted LOW, (2) chip selects are all asserted active, and (3) the write signals (GW, BWE) are all deasserted HIGH. ADSP is ignored if CE_{1} is HIGH. The address presented to the address inputs is stored into the address advancement logic and the address register while being presented to the memory core. The corresponding data is allowed to propagate to the input of the output registers. At the rising edge of the next clock the data is allowed to propagate through the output register and onto the data bus within t_{CO} if OE is active LOW. The only exception occurs when the SRAM is emerging from a deselected state to a selected state, its outputs are always tri-stated during the first cycle of the access. After the first cycle of the access, the outputs are controlled by the $\overline{\mathrm{OE}}$ signal. Consecutive single read cycles are supported.
The CY7C1328G is a double-cycle deselect part. Once the SRAM is deselected at clock rise by the chip select and either $\overline{\text { ADSP }}$ or ADSC signals, its output will tristate immediately after the next clock rise.

Single Write Accesses Initiated by ADSP

This access is initiated when both of the following conditions are satisfied at clock rise: (1) $\overline{\mathrm{ADSP}}$ is asserted LOW, and (2) chip select is asserted active. The address presented is loaded into the address register and the address advancement logic while being delivered to the memory core. The write signals (GW, BWE, and $\overline{\mathrm{BW}}_{[\mathrm{A}: \mathrm{B}]}$) and $\overline{\mathrm{ADV}}$ inputs are ignored during this first cycle.
$\overline{\mathrm{ADSP}}$ triggered write accesses require two clock cycles to complete. If $\overline{G W}$ is asserted LOW on the second clock rise, the data presented to the DQx inputs is written into the corresponding address location in the memory core. If $\overline{\mathrm{GW}}$ is HIGH, then the write operation is controlled by BWE and BW ${ }_{[\mathrm{A}: \mathrm{B}}$ signals. The CY7C1328G provides byte write capability that is described in the Write Cycle Description table. Asserting the byte write enable input (BWE) with the selected byte write input will selectively write to only the desired bytes. Bytes not selected during a byte write operation will remain unaltered. A synchronous self-timed write mechanism has been provided to simplify the write operations.
Because the CY7C1328G is a common I/O device, the output enable (OE) must be deasserted HIGH before presenting data to the DQ inputs. Doing so will tristate the output drivers. As a safety precaution, DQ are automatically tri-stated whenever a write cycle is detected, regardless of the state of OE.

Single Write Accesses Initiated by ADSC

$\overline{\mathrm{ADSC}}$ write accesses are initiated when the following conditions are satisfied: (1) ADSC is asserted LOW, (2) ADSP is deasserted HIGH, (3) chip select is asserted active, and (4) the appropriate combination of the write inputs ($\overline{\mathrm{GW}}, \overline{\mathrm{BWE}}$, and $\overline{\mathrm{BW}}_{[\mathrm{A}: \mathrm{B}]}$) are asserted active to conduct a write to the desired byte(s). ADSC triggered write accesses require a single clock cycle to complete. The address presented is loaded into the address register and the address advancement logic while being delivered to the memory core. The ADV input is ignored during this cycle. If a global write is conducted, the data presented to the $D Q_{X}$ is written into the corresponding address location in the memory core. If a byte write is conducted, only the selected bytes are written. Bytes not selected during a byte write operation will remain unaltered. A synchronous self-timed write mechanism has been provided to simplify the write operations.
Because the CY7C1328G is a common I/O device, the output enable ($\overline{\mathrm{OE}}$) must be deasserted HIGH before presenting data to the $D Q_{X}$ inputs. Doing so will tristate the output drivers. As a safety precaution, DQ_{X} are automatically tri-stated whenever a write cycle is detected, regardless of the state of $\overline{O E}$.

CY7C1328G

Burst Sequences

The CY7C1328G provides a two-bit wraparound counter, fed by $\mathrm{A}_{\text {[1:0] }}$, that implements either an interleaved or linear burst sequence. The interleaved burst sequence is designed specifically to support Intel Pentium applications. The linear burst sequence is designed to support processors that follow a linear burst sequence. The burst sequence is user selectable through the MODE input. Both read and write burst operations are supported.
Asserting $\overline{\text { ADV }}$ LOW at clock rise will automatically increment the burst counter to the next address in the burst sequence. Both read and write burst operations are supported.

Sleep Mode

The ZZ input pin is an asynchronous input. Asserting ZZ places the SRAM in a power conservation "sleep" mode. Two clock cycles are required to enter into or exit from this "sleep" mode. While in this mode, data integrity is guaranteed. Accesses pending when entering the "sleep" mode are not considered valid nor is the completion of the operation guaranteed. The device must be deselected prior to entering the "sleep" mode. CEs, $\overline{\text { ADSP }}$, and $\overline{\text { ADSC }}$ must remain inactive for the duration of $\mathrm{t}_{\text {ZZREC }}$ after the ZZ input returns LOW.

Interleaved Burst Address Table (MODE = Floating or VDD)

First Address $\mathbf{A 1 , ~ A 0}$	Second $\mathbf{A d d r e s s}$ $\mathbf{A 1 , ~ A 0 ~}$	Third Address A1, A0	Fourth Address $\mathbf{A 1 , ~ A 0 ~}$
00	01	10	11
01	00	11	10
10	11	00	01
11	10	01	00

First Address $\mathbf{A 1 , ~ A 0 ~}$	Second Address $\mathbf{A 1 , ~ A 0 ~}$	Third Address $\mathbf{A 1 , ~ A 0 ~}$	Fourth Address $\mathbf{A 1 , ~ A 0 ~}$
00	01	10	11
01	10	11	00
10	11	00	01
11	00	01	10

ZZ Mode Electrical Characteristics

Parameter	Description	Test Conditions	Min	Max	Unit
$\mathrm{I}_{\mathrm{DDZZ}}$	Snooze mode standby current	$\mathrm{ZZ} \geq \mathrm{V}_{\mathrm{DD}}-0.2 \mathrm{~V}$	-	40	mA
$\mathrm{t}_{\text {ZZS }}$	Device operation to ZZ	$\mathrm{ZZ} \geq \mathrm{V}_{\mathrm{DD}}-0.2 \mathrm{~V}$	-	$2 \mathrm{t}_{\mathrm{CYC}}$	ns
$\mathrm{t}_{\text {ZZREC }}$	ZZ recovery time	$\mathrm{ZZ} \leq 0.2 \mathrm{~V}$	$2 \mathrm{t}_{\mathrm{CYC}}$	-	ns
$\mathrm{t}_{\mathrm{ZZI}}$	ZZ active to snooze current	This parameter is sampled	-	$2 \mathrm{t}_{\mathrm{CYC}}$	ns
$\mathrm{t}_{\text {RZZI }}$	ZZ inactive to exit snooze current	This parameter is sampled	0	-	ns

Truth Table

The Truth Table for part CY7C1328G is as follows. ${ }^{[2, ~ 3, ~ 4, ~ 5, ~ 6] ~}$

Operation	Address Used	$\overline{\mathrm{CE}}_{1}$	$C E_{2}$	$\overline{C E}_{3}$	ZZ	ADSP	$\overline{\text { ADSC }}$	$\overline{\text { ADV }}$	$\overline{\text { WRITE }}$	$\overline{\mathrm{OE}}$	CLK	DQ
Deselected cycle, power-down	None	H	X	X	L	X	L	X	X	X	L-H	Tristate
Deselected cycle, power-down	None	L	L	X	L	L	X	X	X	X	L-H	Tristate
Deselected cycle, power-down	None	L	X	H	L	L	X	X	X	X	L-H	Tristate
Deselected cycle, power-down	None	L	L	X	L	H	L	X	X	X	L-H	Tristate
Deselected cycle, power-down	None	L	X	H	L	H	L	X	X	X	L-H	Tristate
ZZ mode, power-down	None	X	X	X	H	X	X	X	X	X	X	Tristate
Read cycle, begin burst	External	L	H	L	L	L	X	X	X	L	L-H	Q
Read cycle, begin burst	External	L	H	L	L	L	X	X	X	H	L-H	Tristate
Write cycle, begin burst	External	L	H	L	L	H	L	X	L	X	L-H	D
Read cycle, begin burst	External	L	H	L	L	H	L	X	H	L	L-H	Q
Read cycle, begin burst	External	L	H	L	L	H	L	X	H	H	L-H	Tristate
Read cycle, continue burst	Next	X	X	X	L	H	H	L	H	L	L-H	Q
Read cycle, continue burst	Next	X	X	X	L	H	H	L	H	H	L-H	Tristate
Read cycle, continue burst	Next	H	X	X	L	X	H	L	H	L	L-H	Q
Read cycle, continue burst	Next	H	X	X	L	X	H	L	H	H	L-H	Tristate
Write cycle, continue burst	Next	X	X	X	L	H	H	L	L	X	L-H	D
Write cycle, continue burst	Next	H	X	X	L	X	H	L	L	X	L-H	D
Read cycle, suspend burst	Current	X	X	X	L	H	H	H	H	L	L-H	Q
Read cycle, suspend burst	Current	X	X	X	L	H	H	H	H	H	L-H	Tristate
Read cycle, suspend burst	Current	H	X	X	L	X	H	H	H	L	L-H	Q
Read cycle, suspend burst	Current	H	X	X	L	X	H	H	H	H	L-H	Tristate
Write cycle, suspend burst	Current	X	X	X	L	H	H	H	L	X	L-H	D
Write cycle, suspend burst	Current	H	X	X	L	X	H	H	L	X	L-H	D

Truth Table for Read/Write

The Truth Table for read or write for part CY7C1328G is as follows. ${ }^{[2]}$

Function	$\overline{\mathbf{G W}}$	$\overline{\mathbf{B W E}}$	$\overline{\mathbf{B W}}_{\mathbf{A}}$	$\overline{\mathbf{B W}}_{\mathbf{B}}$
Read	H	H	X	X
Read	H	L	H	H
Write byte $\mathrm{A}-\left(\mathrm{DQ}_{\mathrm{A}}\right.$ and $\left.\mathrm{DQP}_{\mathrm{A}}\right)$	H	L	L	H
Write byte B $\left(\mathrm{DQ}_{\mathrm{B}}\right.$ and $\left.\mathrm{DQP}_{\mathrm{B}}\right)$	L	H	L	
Write all bytes	H	L	L	L
Write all bytes	L	X	X	X

Notes

2. $\mathrm{X}=$ "Don't Care." H = Logic HIGH, L = Logic LOW.
3. $\overline{\text { WRITE }}=L$ when any one or more byte write enable signals $\left(\overline{\mathrm{BW}}_{\mathrm{A}}, \overline{\mathrm{BW}}_{\mathrm{B}}\right)$ and $\overline{\mathrm{BWE}}=\mathrm{L}$ or $\overline{\mathrm{GW}}=\mathrm{L} . \overline{\mathrm{WRITE}}=\mathrm{H}$ when all byte write enable signals $\left(\overline{\mathrm{BW}}_{\mathrm{A}}, \overline{\mathrm{BW}}_{\mathrm{B}}\right)$, BWE, $\overline{G W}=\mathrm{H}$
4. The DQ pins are controlled by the current cycle and the $\overline{\mathrm{OE}}$ signal. $\overline{\mathrm{OE}}$ is asynchronous and is not sampled with the clock.
5. The SRAM always initiates a read cycle when $\overline{A D S P}$ is asserted, regardless of the state of $\overline{G W}, \overline{B W E}$, or $\overline{B W}_{X}$. Writes may occur only on subsequentclocks after the ADSP or with the assertion of ADSC. As a result, OE must be driven HIGH prior to the start of the write cycle to allow the outputs to tristate. OE is a don't care for the remainder of the write cycle.
6. $\overline{\mathrm{OE}}$ is asynchronous and is not sampled with the clock rise. It is masked internally during write cycles. During a read cycle all data bits are tristate when $\overline{\mathrm{OE}}$ is inactive or when the device is deselected, and all data bits behave as output when OE is active (LOW).

Maximum Ratings

Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.
Storage temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient temperature with power applied \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply voltage on $V_{D D}$ relative to GND \qquad -0.5 V to +4.6 V
Supply voltage on $V_{D D Q}$ relative to GND \qquad -0.5 V to $+\mathrm{V}_{\mathrm{DD}}$ DC voltage applied to outputs in tristate
-0.5 V to $\mathrm{V}_{\mathrm{DDQ}}+0.5 \mathrm{~V}$

DC input voltage -0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
Current into outputs (LOW) ... 20 mA
Static discharge voltage...> 2001 V
(per MIL-STD-883, method 3015)
Latch up current
> 200 mA

Operating Range

Range	Ambient Temperature $\left(\mathbf{T}_{\mathbf{A}}\right)$	$\mathbf{V}_{\mathbf{D D}}$	$\mathbf{V}_{\mathbf{D D Q}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$3.3 \mathrm{~V}-5 \% /$ $+10 \%$	$2.5 \mathrm{~V}-5 \%$ to V_{DD}
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	(

Electrical Characteristics

Over the Operating Range ${ }^{[7,8]}$

Parameter	Description	Test Conditions		Min	Max	Unit
$V_{\text {DD }}$	Power supply voltage			3.135	3.6	V
$\mathrm{V}_{\text {DDQ }}$	I/O supply voltage			2.375	V_{DD}	V
V_{OH}	Output HIGH voltage	$\mathrm{V}_{\mathrm{DDQ}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$		2.4	-	V
		$\mathrm{V}_{\mathrm{DDQ}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$		2.0	-	V
V_{OL}	Output LOW voltage	$\mathrm{V}_{\mathrm{DDQ}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=\mathrm{Max}, \mathrm{l}_{\mathrm{OL}}=8.0 \mathrm{~mA}$		-	0.4	V
		$\mathrm{V}_{\mathrm{DDQ}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=\mathrm{Max}, \mathrm{I}_{\mathrm{OL}}=1.0 \mathrm{~mA}$		-	0.4	V
V_{IH}	Input HIGH voltage ${ }^{[7]}$	$\mathrm{V}_{\text {DDQ }}=3.3 \mathrm{~V}$		2.0	$\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$	V
		$\mathrm{V}_{\text {DDQ }}=2.5 \mathrm{~V}$		1.7	$\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$	V
$\mathrm{V}_{\text {IL }}$	Input LOW voltage ${ }^{[7]}$	$\mathrm{V}_{\text {DDQ }}=3.3 \mathrm{~V}$		-0.3	0.8	V
		$\mathrm{V}_{\mathrm{DDQ}}=2.5 \mathrm{~V}$		-0.3	0.7	V
${ }^{\prime} \times$	Input leakage current except ZZ and MODE	$\mathrm{GND} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\text {DDQ }}$		-5	5	$\mu \mathrm{A}$
	Input current of MODE	Input $=\mathrm{V}_{\text {SS }}$		-30		$\mu \mathrm{A}$
		Input $=\mathrm{V}_{\mathrm{DD}}$			5	$\mu \mathrm{A}$
	Input current of ZZ	Input $=\mathrm{V}_{\text {SS }}$		-5	-	$\mu \mathrm{A}$
		Input $=\mathrm{V}_{\mathrm{DD}}$		-	30	$\mu \mathrm{A}$
I_{Oz}	Output leakage current	GND $\leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{DDQ}}$, output disabled		-5	5	$\mu \mathrm{A}$
I_{DD}	$V_{D D}$ operating supply current	$\begin{aligned} & V_{\text {DD }}=\mathrm{Max}, \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA}, \\ & \mathrm{f}=\mathrm{f}_{\mathrm{MAX}}=1 / \mathrm{t}_{\mathrm{CYC}} \end{aligned}$	4-ns cycle, 250 MHz	-	325	mA
			5-ns cycle, 200 MHz	-	265	mA
			6-ns cycle, 167 MHz	-	240	mA
			7.5-ns cycle, 133 MHz	-	225	mA
$\mathrm{I}_{\text {SB1 }}$	Automatic CE power-down current-TTL inputs	$\begin{aligned} & V_{D D}=\text { Max, device deselected, } \\ & V_{I N} \geq V_{I H} \text { or } V_{I N} \leq V_{I L}, \\ & f=f_{M A X}=1 / \mathrm{t}_{\mathrm{CYC}} \end{aligned}$	4-ns cycle, 250 MHz	-	120	mA
			5-ns cycle, 200 MHz	-	110	mA
			6-ns cycle, 167 MHz	-	100	mA
			7.5-ns cycle, 133 MHz	-	90	mA

[^1]CY7C1328G

Electrical Characteristics

Over the Operating Range ${ }^{[7,8]}$ (continued)

Parameter	Description	Test Conditions		Min	Max	Unit
$\mathrm{I}_{\text {SB2 }}$	Automatic CE power-down current-CMOS inputs	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=\text { Max, device deselected, } \\ & \mathrm{V}_{\text {IN }} \leq 0.3 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\text {IN }} \geq \mathrm{V}_{\mathrm{DDQ}}-0.3 \mathrm{~V}, \\ & \mathrm{f}=0 \end{aligned}$	All speeds	-	40	mA
$\mathrm{I}_{\text {SB3 }}$	Automatic CE power-down current-CMOS inputs	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=\text { Max, device deselected, } \\ & \text { or } \mathrm{V}_{\text {IN }} \leq 0.3 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{DDQ}}-0.3 \mathrm{~V}, \\ & \mathrm{f}=\mathrm{f}_{\mathrm{MAX}}=1 / \mathrm{t}_{\mathrm{CYC}} \end{aligned}$	4-ns cycle, 250 MHz	-	105	mA
			5-ns cycle, 200 MHz	-	95	mA
			6-ns cycle, 167 MHz	-	85	mA
			7.5-ns cycle, 133 MHz	-	75	mA
$\mathrm{I}_{\text {SB4 }}$	Automatic CE power-down current-TTL inputs	$V_{D D}=$ Max, device deselected, $\mathrm{V}_{\text {IN }} \geq \mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {IL }}, \mathrm{f}=0$	All speeds	-	45	mA

Capacitance ${ }^{[9]}$

Parameter	Description	Test Conditions	$\begin{aligned} & 100 \text { TQFP } \\ & \text { Max } \end{aligned}$	Unit
$\mathrm{C}_{\text {IN }}$	Input capacitance	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \\ \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DQ}}=3.3 \mathrm{~V} \end{gathered}$	5	pF
$\mathrm{C}_{\text {CLK }}$	Clock input capacitance		5	pF
$\mathrm{C}_{1 / \mathrm{O}}$	Input/output capacitance		5	pF

Thermal Characteristics ${ }^{[9]}$

Parameter	Description	Test Conditions	100 TQFP Package	Unit
Θ_{JA}	Thermal resistance (junction to ambient)	Test conditions follow standard test methods and procedures for measuring thermal impedance, per EIA/JESD51.	30.32	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Θ_{JC}	Thermal resistance (junction to case)	6.85	${ }^{\circ} \mathrm{C} / \mathrm{W}$	

AC Test Loads and Waveforms

(a)

JIG AND SCOPE
(b)

(c)

(c)

Note
9. Tested initially and after any design or process change that may affect these parameters.

Switching Characteristics

Over the Operating Range [10, 11, 12, 13, 14, 15]

Parameter	Description	-250		-200		-167		-133		Unit
		Min	Max	Min	Max	Min	Max	Min	Max	
tPOWER	V_{DD} (Typical) to the first access ${ }^{[12]}$	1.0	-	1.0	-	1.0	-	1.0	-	ms
Clock										
$\mathrm{t}_{\mathrm{CYC}}$	Clock cycle time	4.0	-	5.0	-	6.0	-	7.5	-	ns
t_{CH}	Clock HIGH	1.7	-	2.0	-	2.5	-	3.0	-	ns
t_{CL}	Clock LOW	1.7	-	2.0	-	2.5	-	3.0	-	ns
Output Times										
t_{CO}	Data output valid after CLK rise	-	2.6	-	2.8	-	3.5	-	4.0	ns
$\mathrm{t}_{\mathrm{DOH}}$	Data output hold after CLK rise	1.0	-	1.0	-	1.5	-	1.5	-	ns
$\mathrm{t}_{\text {CLZ }}$	Clock to low ${ }^{[13,14,15]}$	0	-	0	-	0	-	0	-	ns
$\mathrm{t}_{\mathrm{CHZ}}$	Clock to high $\mathrm{Z}^{[13,14,15]}$	-	2.6	-	2.8	-	3.5	-	4.0	ns
toev	$\overline{\mathrm{OE}}$ LOW to output valid	-	2.6	-	2.8	-	3.5	-	4.0	ns
$\mathrm{t}_{\text {OELZ }}$	$\overline{\mathrm{OE}}$ LOW to output low $\mathrm{Z}^{[13,14,15]}$	0	-	0	-	0	-	0	-	ns
toenz	$\overline{\mathrm{OE}}$ HIGH to output high $Z^{[13,14,15]}$	-	2.6	-	2.8	-	3.5	-	4.0	ns
Setup Times										
$\mathrm{t}_{\text {AS }}$	Address setup before CLK rise	1.2	-	1.2	-	1.5	-	1.5	-	ns
$\mathrm{t}_{\text {ADS }}$	$\overline{\text { ADSC }}$, $\overline{\text { ADSP }}$ setup before CLK rise	1.2	-	1.2	-	1.5	-	1.5	-	ns
$\mathrm{t}_{\text {ADVS }}$	$\overline{\text { ADV }}$ setup before CLK rise	1.2	-	1.2	-	1.5	-	1.5	-	ns
twes	$\overline{\mathrm{GW}}, \overline{\mathrm{BWE}}, \overline{\mathrm{BW}}_{\mathrm{X}}$ setup before CLK rise	1.2	-	1.2	-	1.5	-	1.5	-	ns
t_{DS}	Data input setup before CLK rise	1.2	-	1.2	-	1.5	-	1.5	-	ns
$\mathrm{t}_{\text {CES }}$	Chip enable setup before CLK rise	1.2	-	1.2	-	1.5	-	1.5	-	ns
Hold Times										
t_{AH}	Address hold after CLK rise	0.3	-	0.5	-	0.5	-	0.5	-	ns
$\mathrm{t}_{\text {ADH }}$	$\overline{\text { ADSP, }}$ ADSC hold after CLK rise	0.3	-	0.5	-	0.5	-	0.5	-	ns
$\mathrm{t}_{\text {ADVH }}$	$\overline{\text { ADV }}$ hold after CLK rise	0.3	-	0.5	-	0.5	-	0.5	-	ns
$\mathrm{t}_{\text {WEH }}$	$\overline{\mathrm{GW}}$, $\overline{\mathrm{BWE}}^{\text {, }} \overline{\mathrm{BW}}_{\mathrm{X}}$ hold after CLK rise	0.3	-	0.5	-	0.5	-	0.5	-	ns
t_{DH}	Data input hold after CLK rise	0.3	-	0.5	-	0.5	-	0.5	-	ns
$\mathrm{t}_{\text {CEH }}$	Chip enable hold after CLK rise	0.3	-	0.5	-	0.5	-	0.5	-	ns

[^2]
Switching Waveforms

Read Timing ${ }^{[16]}$

Note
16. On this diagram, when $\overline{\mathrm{CE}}$ is LOW: $\overline{\mathrm{CE}}_{1}$ is LOW, CE_{2} is HIGH and $\overline{\mathrm{CE}}_{3}$ is LOW. When $\overline{\mathrm{CE}}$ is $\mathrm{HIGH}: \overline{\mathrm{CE}}_{1}$ is HIGH or CE_{2} is LOW or $\overline{\mathrm{CE}}_{3}$ is HIGH .

Switching Waveforms (continued)
Write Timing ${ }^{[17,18]}$

Notes
17. On this diagram, when $\overline{\mathrm{CE}}$ is LOW: $\overline{\mathrm{CE}}_{1}$ is LOW, CE_{2} is HIGH and $\overline{\mathrm{CE}}_{3}$ is LOW . When $\overline{\mathrm{CE}}$ is HIGH: $\overline{\mathrm{CE}}_{1}$ is HIGH or CE 2 is LOW or $\overline{\mathrm{CE}}_{3}$ is HIGH 18. Full width write can be initiated by either GW LOW; or by $\overline{\mathrm{GW}}$ HIGH, $\overline{\mathrm{BWE}} \mathrm{LOW}$ and $\overline{\mathrm{BW}}_{[\mathrm{A}: \mathrm{B}]} \mathrm{LOW}$.

Switching Waveforms (continued)
Read/Write Timing ${ }^{[19, ~ 20, ~ 21] ~}$

[^3]Switching Waveforms (continued)
ZZ Mode Timing ${ }^{[22, ~ 23]}$

Notes
22. Device must be deselected when entering $Z Z$ mode. See truth table for all possible signal conditions to deselect the device. 23. DQs are in high Z when exiting $Z Z$ sleep mode.

Ordering Information

Cypress offers other versions of this type of product in many different configurations and features. The following table contains only the list of parts that are currently available.
For a complete listing of all options, visit the Cypress website at www.cypress.com and refer to the product summary page at http://www.cypress.com/products or contact your local sales representative.
Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives and distributors. To find the office closest to you, visit us at http://www.cypress.com/go/datasheet/offices.

Speed (MHz)	Ordering Code	Package Diagram	Package Type	Operating Range
133	CY7C1328G-133AXI	$51-85050$	100-pin Thin Quad Flat Pack $(14 \times 20 \times 1.4 \mathrm{~mm})$ Pb-free	Industrial

Ordering Code Definitions

Package Diagram

Figure 2. $100-\mathrm{pin}$ TQFP $(14 \times 20 \times 1.4 \mathrm{~mm}), 51-85050$

NDTE:
. JEDEC STD REF MS-026
2. BDDY LENGTH DIMENSIDN DDES NDT INCLUDE MDLD PRDTRUSIDN/END FLASH MILD PRDTRUSIDN/END FLASH SHALL NDT EXCEED 0.0098 in (0.25 mm) PER SIDE BZDY LENGTH DIMENSIDNS ARE MAX PLASTIC BZDY SIZE INCLUDING MILD MISMATCH
3. DIMENSIDNS IN MILLIMETERS
1.00 REF. DETAILA

Acronyms

Acronym	Description
CE	chip enable
CEN	clock enable
I/O	input/output
OE	output enable
SRAM	static random access memory
TQFP	thin quad flat pack
WE	write enable

Document Conventions

Units of Measure

Symbol	Unit of Measure
ns	nano seconds
V	Volts
$\mu \mathrm{A}$	micro Amperes
mA	milli Amperes
ms	milli seconds
MHz	Mega Hertz
pF	pico Farad
W	Watts
${ }^{\circ} \mathrm{C}$	degree Celcius

Document History Page

Document Title: CY7C1328G 4-Mbit (256 K × 18) Pipelined DCD Sync SRAM Document Number: 38-05523				
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	224371	See ECN	RKF	New data sheet
*A	288909	See ECN	VBL	Changed TQFP to PB-Free TQFP in Ordering Information section
*B	333625	See ECN	SYT	Removed 133-MHz Speed Grade Changed $166-\mathrm{MHz}$ to $167-\mathrm{MHz}$ Speed bin Changed the test condition from $\mathrm{V}_{\mathrm{DD}}=\mathrm{Min}$. to $\mathrm{V}_{\mathrm{DD}}=\mathrm{Max}$. for V_{OL} in the Electrical Characteristics table Replaced TBDs for Θ_{JA} and Θ_{JC} to their respective values on the Thermal Resistance table
${ }^{*} \mathrm{C}$	419264	See ECN	RXU	Converted from Preliminary to Final Changed address of Cypress Semiconductor Corporation on Page\# 1 from "3901 North First Street" to "198 Champion Court" Modified test condition from $V_{I H} \leq V_{D D}$ to $V_{I H}<V_{D D}$ Modified "Input Load" to "Input Leakage Current except ZZ and MODE" in the Electrical Characteristics Table Replaced Package Name column with Package Diagram in the Ordering Information table Replaced Package Diagram of 51-85050 from *A to *B Updated the Ordering Information
*D	430373	See ECN	NXR	Include 133-MHz Speed Grade Updated the ordering information
*E	480368	See ECN	VKN	Added the Maximum Rating for Supply Voltage on $V_{\text {DDQ }}$ Relative to GND. Updated the Ordering Information table.
*F	2896584	03/20/2010	NJY	Removed obsolete part numbers from Ordering Information table and updated package diagrams.
*G	3045943	10/03/2010	NJY	Added Ordering Code Definitions. Added Acronyms and Units of Measure. Minor edits and updated in new template.
*H	3353361	PRIT	08/24/2011	Updated 100-pin TQFP package diagram. Modified Note 1 on page 1.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Automotive	cypress.com/go/automotive
Clocks \& Buffers	cypress.com/go/clocks
Interface	cypress.com/go/interface
Lighting \& Power Control	cypress.com/go/powerpsoc
cypress.com/go/plc	
Memory	cypress.com/go/memory
Optical \& Image Sensing	cypress.com/go/image
PSoC	cypress.com/go/psoc
Touch Sensing	cypress.com/go/touch
USB Controllers	cypress.com/go/USB
Wireless/RF	cypress.com/go/wireless

 application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

 the express written permission of Cypress.

 assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

[^0]: Note

 1. For best practices recommendations, refer to SRAM System Design Guidelines.
[^1]: Notes
 7. Overshoot: $\mathrm{V}_{\mathrm{IH}}(\mathrm{AC})<\mathrm{V}_{\mathrm{DD}}+1.5 \mathrm{~V}$ (Pulse width less than $\mathrm{t}_{\mathrm{CYC}} / 2$), undershoot: $\mathrm{V}_{\mathrm{IL}}(\mathrm{AC})>-2 \mathrm{~V}$ (Pulse width less than $\mathrm{t}_{\mathrm{CYC}} / 2$).
 8. $T_{\text {Power-up: }}$ Assumes a linear ramp from 0 V to $\mathrm{V}_{\mathrm{DD}}(\mathrm{min})$ within 200 ms . During this time $\mathrm{V}_{I H}<\mathrm{V}_{\mathrm{DD}}$ and $\mathrm{V}_{\mathrm{DDQ}} \leq \mathrm{V}_{\mathrm{DD}}$.

[^2]: Notes
 10. Timing reference level is 1.5 V when $\mathrm{V}_{\mathrm{DDQ}}=3.3 \mathrm{~V}$ and is 1.25 V when $\mathrm{V}_{\mathrm{DDQ}}=2.5 \mathrm{~V}$.
 11. Test conditions shown in (a) of AC Test Loads unless otherwise noted.
 12. This part has a voltage regulator internally; tPOWER is the time that the power needs to be supplied above $V_{D D}$ minimum initially before a read or write operation can be initiated.
 13. $\mathrm{t}_{\mathrm{CHZ}}, \mathrm{t}_{\mathrm{CLZ}}, \mathrm{t}_{\mathrm{OELZ}}$, and $\mathrm{t}_{\mathrm{OEHZ}}$ are specified with AC test conditions shown in part (b) of AC Test Loads. Transition is measured $\pm 200 \mathrm{mV}$ from steady-state voltage.
 14. At any given voltage and temperature, t_{OEHZ} is less than $\mathrm{t}_{\mathrm{OELZ}}$ and $\mathrm{t}_{\mathrm{CHZ}}$ is less than $\mathrm{t}_{\mathrm{CLZ}}$ to eliminate bus contention between SRAMs when sharing the same data bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed to achieve high Z prior to low Z under the same system conditions.
 15. This parameter is sampled and not 100% tested.

[^3]: Notes
 19. On this diagram, when $\overline{\mathrm{CE}}$ is LOW: $\overline{\mathrm{CE}}_{1}$ is LOW, CE_{2} is HIGH and $\overline{\mathrm{CE}}_{3}$ is LOW. When $\overline{\mathrm{CE}}$ is HIGH: $\overline{\mathrm{CE}}_{1}$ is HIGH or CE 2 is LOW or $\overline{\mathrm{CE}}_{3}$ is HIGH. 20. The data bus (Q) remains in high Z following a WRITE cycle, unless a new read access is initiated by ADSP or ADSC.
 21. $\overline{\mathrm{GW}}$ is HIGH .

